

PMINJ Chapter 01 May Symposium 2017

Cloud Computing and Big Data. What's the Big Deal?

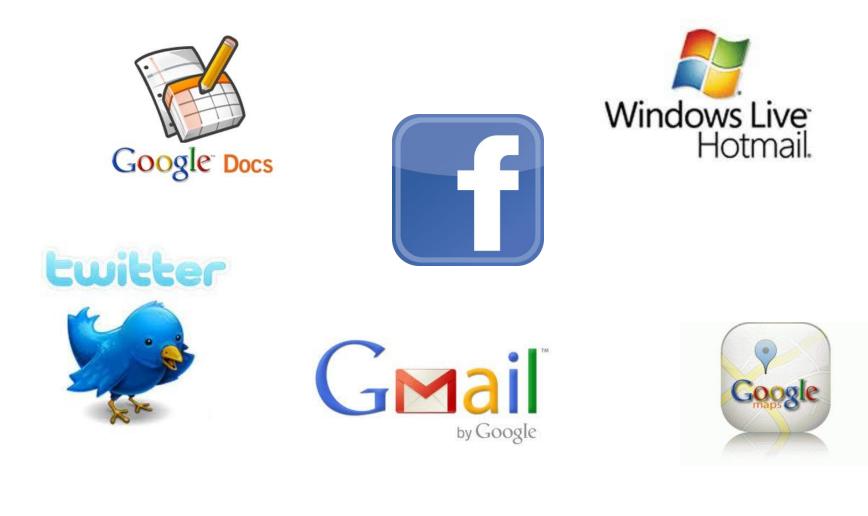
Arlene Minkiewicz, Chief Scientist PRICE Systems, LLC arlene.minkiewicz@pricesystems.com

Agenda

- Introduction
- Cloud Computing
 - Defined
 - Benefits and Risks
- Big Data
 - Defined and Applied
 - Examples
- Wrap Up

Introduction

- Cloud computing is a paradigm that opens the door for utility computing
- Instead of investing in hardware, software and infrastructure, organizations can access through the cloud on an as-needed basis
- Still lots of hype some vendors have their head further in the clouds than their technology

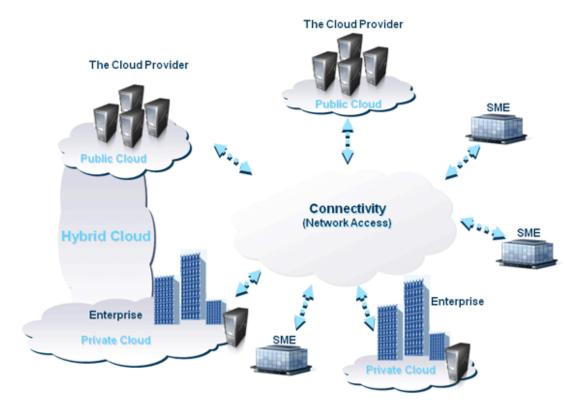


Introduction

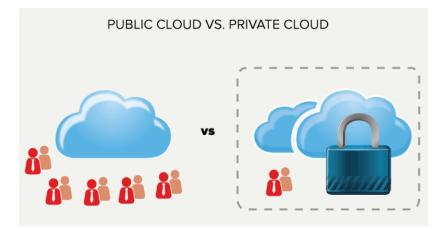
- Cloud computing is a technology that's here to stay
 - A report by Cisco found that 83% of all data center traffic will be based in the cloud within the next 3 years
 - According to Synergy Research Group the cloud computing market grew 21% in 2015 to the tune of \$110 billion
 - According to IDC (International Data Corporation) spending on public cloud services should double from \$70 B in 2015 to \$141 B in 2019
 - In 2016 Hybrid cloud adoption rose from 58% to 71% as more companies are embracing this type of solution
 - Gartner predicts that by 2020 a Corporate "No-Cloud" policy will be as rare as a "No-Internet" Policy today

You probably already are a cloud consumer!

Cloud Computing


- Consumers of cloud computing access hardware, software and networking capabilities from third party providers
- The cloud can be defined as resources and applications that are available on the Internet or other network via any device that connects to the Internet or other network
- According to National Institute of Standards and Technology (NIST), cloud computing delivers the following...
 - On demand self service
 - Ubiquitous network access
 - Location independent resource pooling
 - Rapid elasticity
 - Measured services

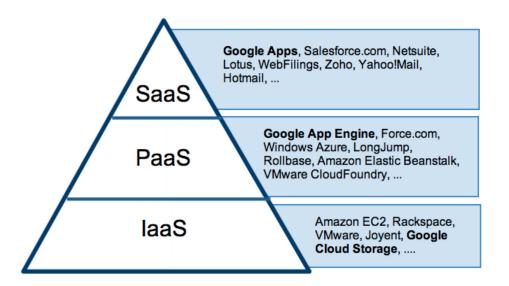
Cloud Computing


Three types of clouds

- Public cloud
- Private cloud
- Hybrid cloud

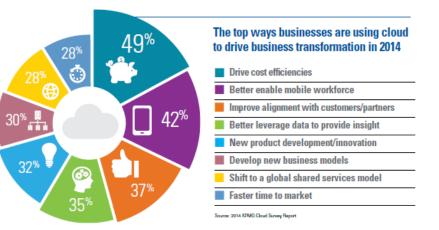
Public and Private Clouds

- Public Cloud
 - Any cloud service that is delivered via the Internet
 - Data on public cloud services is that which is most likely to be compromised in a cloud environment
- Private Clouds are used by those organizations that want to take advantage of cloud technology but don't want to risk vulnerabilities introduced by the Internet
 - Private clouds can be within an organizations fire wall (on premise)
 - Private clouds could be housed with a cloud vendor but with no multi tenancy and no access to the Internet

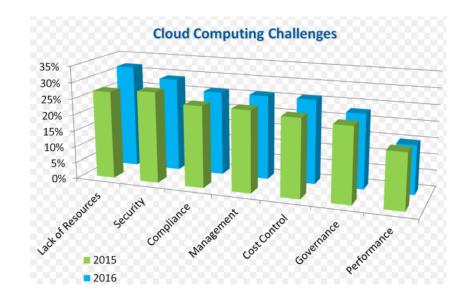

Hybrid Clouds

- Combines onsite private clouds with resources from the Public Cloud
- Organizations gain the benefits of cloud computing while using public cloud services in situation where data or applications are sensitive
- Cloud and compliance have advanced significantly since its introduction – Lockheed Martin, Microsoft, and the Dept. of Agriculture are all running federally compliant clouds
- In 2016 hybrid cloud adoption grew from 58% to 71% over 2015
- Gartner predicts that by the end of 2017 nearly half of large enterprises will have hybrid cloud deployments

Cloud Computing

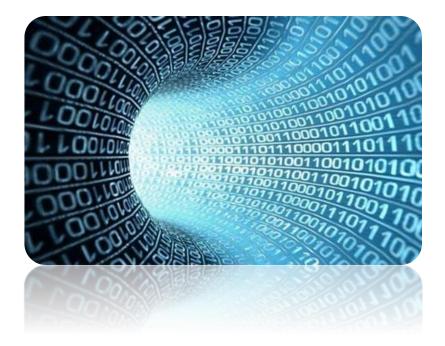

- Cloud computing offerings include:
 - Software as a Service (SaaS)
 - Project management
 - Customer Relationship Management (CRM)
 - Human Resources (HR)
 - Platform as a Service (PaaS)
 - Database
 - Development and Testing
 - Business Intelligence
 - Infrastructure as a Service (IaaS)
 - Backup and Recovery
 - Storage
 - Computation

Cloud Computing Benefits


- Cost savings
- Agility
- Flexibility
- Scalability
- On-Demand Availability
- Data Centralization
- Portability
- Environmental
- Increased Innovation
- Disaster Relief

Source: KPMG Cloud Survey Report 2014

Could Computing Risks and Challenges


- Lack of Available Resources
- Security
- Compliance
- Reliability/Performance
- Data Governance
- Legal Concerns
- Cost Management
- Vendor Lock In
- Loss of Control

Source : Corpinfo Blog posting 8/2016

Big Data - Defined

- Defined by Forrester as "the techniques and technologies that make capturing value from data at extreme scales economical"
- Wikipedia defines it as "a collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications"
- Big data is defined by the following characteristics:
 - Rapid data accumulation
 - High data volumes
 - Diversity in types of data and data sources
- Or in plain language number crunching of epic proportion accomplishing in minutes what may have taken weeks several years ago

Big Data & the Cloud?

- The notion of Big Data can exist without cloud computing
- The question is whether the notion of Big Data would have been conceived without the cloud
- We share our thoughts, pictures, videos, etc. through cloud based apps such as Facebook, Twitter, Google+, etc.
- According to a Survey conducted by comScore and UPS for Forbes magazine – in 2016 more than 50% of purchases were made online than in stores

Big Data & the Cloud?

- Google processes over 40,000 searches per second, 3.5 B per day, 1.2 T per year worldwide
- All these applications exist in the cloud and their providers take Orwellian interest in every transaction and query that is made
- This is how Facebook knows who to recommend as your friend and how Amazon knows what books you might like to read or what movies you want to watch

Big Data & Cloud

- Cloud computing is an enabling technology for Big Data
- Add to this the vast amount of data collected from other applications and devices that collect and transmit data
- This data is collected in many formats... text, video, still, audio, sensor reading, GPS coordinates, radio frequency identification readers(RIF), etc. – all thrown into the same pot
- Big Data is the tools and techniques that make it possible to process these large amounts of data in varying formats
- Full circle back to the cloud where else can we find nearly unlimited access to storage and processing power?

- Potential uses include:
 - Threat detection
 - Battlefield analysis
 - Business intelligence
 - Machine reading
 - Medical research
 - Health care monitoring
 - And the list goes on.....
- Not to say we can't already do these things... Big Data opens the door to do them more efficiently and effectively

- The National Science Foundation along with 10 other research funding organizations are currently hosting round 4 of the Digging into Data challenge
- Some of the projects that Round 4 awardees are working on include...
 - Trees and Tweets: Mining Billions to Understand Human Migration and Regional Linguistic Variations
 - Analysis of Twitter data to identify how language patterns vary by regions and genders
 - Use of uh vs Um
 - Alternation between Haha and LOL
 - Used visualization techniques to understand speech patterns across the US

- Some of the projects that Round 4 awardees are working on include...
 - An Epidemiology of Information: Data Mining the 1918 Influenza Epidemic
 - Analysis of digitized historic newspapers
 - Studied the spread of the flu through US and Canada
 - The project sought to gain understanding of how newspapers shaped public opinion about the 1918 pandemic
- While very academic these examples provide a window into the kinds of research Big Data makes possible
- More can be found at the Digging into Data Challenge website <u>www.diggingintodata.org</u>

- A few more practical examples regarding the US DoDs applications of Big Data
 - Situational Awareness and Visualization including Geospatial Intelligence (GEOINT) which exploits and analyzes geospatial information to improve situational awareness and decision making
 - Imagery
 - Terrain data
 - Real time data
 - Enterprise Cyber Security Data Management distinguishing computer attacks and data threats from normal computer and network activity. Analyzing current activity based on information from:
 - Computer error logs
 - Network attack information
 - Data from organizations that have been violated
 - Vulnerability reports

Big Data in Practice- Starbucks

- Starbuck will often expand in an area already saturated with Starbucks locations
- They use big data analytics to determine whether a particular location will be successful
- They do an analysis of success rate of a new location in terms of:
 - Location based data
 - Traffic data for the area
 - Demographic data
 - Customer based data

- A few more interesting applications
 - iPhones ResearchKit turns your phone into a biomedical research device – tracking steps or asking questions about an illness for real time data collection on health
 - WeatherSignal taps into sensors in the phone (barometer, hygrometer, ambient thermometer, light meter) to collect weather related data to feed into predictive models
 - Route (outdoor marketing company) uses big data to determine where best to advertise. Analysis of data from GPS, eye-tracking software and traffic patterns to determine where an advertisement will be most effective
 - Long Beach, CA uses smart water meters to detect illegal watering in real time and help homeowners cut consumption by as much as 80%

Conclusion

- Cloud computing allows organizations to offload their IT resource requirements and responsibilities to outside providers
- In so doing, it creates an environment where huge amounts of data can be collected, stored and processed.
- Big Data is the notion of doing useful things with this data in an efficient manner. Cloud computing enables this notion
- Big Data has the potential to change the world through making it possible for researchers to efficiently and effectively comb through mountains of heterogeneous data
- Final Big Data Example Discovering how children learn language

Questions

Arlene.minkiewicz@pricesystems.com